Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.

نویسندگان

  • Takeshi Inagaki
  • Antonio Moschetta
  • Youn-Kyoung Lee
  • Li Peng
  • Guixiang Zhao
  • Michael Downes
  • Ruth T Yu
  • John M Shelton
  • James A Richardson
  • Joyce J Repa
  • David J Mangelsdorf
  • Steven A Kliewer
چکیده

Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese

Lactobacillus strains are a major part of the probiotics, microflora of the intestine and of fermented dairy products, and are found in a variety of environments. The aim of this study was to find out the ability of bile and acid tolerance and antibacterial properties of the twenty eight isolates of three group lactobacilli namely Lactobacillus plantarum, Lactobacillus casei and Lactobacillus d...

متن کامل

How bile acids confer gut mucosal protection against bacteria.

B ile is a complex mixture of organic and inorganic molecules that is stored in the gallbladder and released into the proximal small intestine when a meal is eaten. Bile is both an excretory secretion, to eliminate cholesterol, bilirubin, and waste products, and a digestive secretion, to promote lipid absorption. The dominant organic constituents of bile are conjugated bile acids (also termed b...

متن کامل

Bile acids: regulation of synthesis.

Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important ...

متن کامل

Genome-wide analysis of PPAR activation in murine small intestine

Bünger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Müller M. Genome-wide analysis of PPAR activation in murine small intestine. Physiol Genomics 30: 192–204, 2007. First published April 10, 2007; doi:10.1152/physiolgenomics.00198.2006.— The peroxisome proliferator-activated receptor alpha (PPAR ) is a fatty acid-activated transcription factor that governs a variety of biologi...

متن کامل

Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis.

Liver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7alpha-hydroxylase (CYP7A1) and sterol 12alpha-hydroxylase (CYP8B1), which catalyze key steps in bile acid synth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 10  شماره 

صفحات  -

تاریخ انتشار 2006